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2.3.3 Large deviations 28
2.3.4 Steepest descent method and Cramèr function (∗) 30
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1
Probability theory: basic notions

All epistemological value of the theory of probability is based on this: that large scale
random phenomena in their collective action create strict, non random regularity.

(Gnedenko and Kolmogorov, Limit Distributions for Sums of Independent
Random Variables.)

1.1 Introduction

Randomness stems from our incomplete knowledge of reality, from the lack of information
which forbids a perfect prediction of the future. Randomness arises from complexity, from
the fact that causes are diverse, that tiny perturbations may result in large effects. For over a
century now, Science has abandoned Laplace’s deterministic vision, and has fully accepted
the task of deciphering randomness and inventing adequate tools for its description. The
surprise is that, after all, randomness has many facets and that there are many levels to
uncertainty, but, above all, that a new form of predictability appears, which is no longer
deterministic but statistical.

Financial markets offer an ideal testing ground for these statistical ideas. The fact that
a large number of participants, with divergent anticipations and conflicting interests, are
simultaneously present in these markets, leads to unpredictable behaviour. Moreover, finan-
cial markets are (sometimes strongly) affected by external news – which are, both in date
and in nature, to a large degree unexpected. The statistical approach consists in drawing
from past observations some information on the frequency of possible price changes. If one
then assumes that these frequencies reflect some intimate mechanism of the markets them-
selves, then one may hope that these frequencies will remain stable in the course of time.
For example, the mechanism underlying the roulette or the game of dice is obviously always
the same, and one expects that the frequency of all possible outcomes will be invariant in
time – although of course each individual outcome is random.

This ‘bet’ that probabilities are stable (or better, stationary) is very reasonable in the
case of roulette or dice;† it is nevertheless much less justified in the case of financial
markets – despite the large number of participants which confer to the system a certain

† The idea that science ultimately amounts to making the best possible guess of reality is due to R. P. Feynman
(Seeking New Laws, in The Character of Physical Laws, MIT Press, Cambridge, MA, 1965).
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regularity, at least in the sense of Gnedenko and Kolmogorov. It is clear, for example, that
financial markets do not behave now as they did 30 years ago: many factors contribute to
the evolution of the way markets behave (development of derivative markets, world-wide
and computer-aided trading, etc.). As will be mentioned below, ‘young’ markets (such as
emergent countries markets) and more mature markets (exchange rate markets, interest rate
markets, etc.) behave quite differently. The statistical approach to financial markets is based
on the idea that whatever evolution takes place, this happens sufficiently slowly (on the scale
of several years) so that the observation of the recent past is useful to describe a not too
distant future. However, even this ‘weak stability’ hypothesis is sometimes badly in error,
in particular in the case of a crisis, which marks a sudden change of market behaviour. The
recent example of some Asian currencies indexed to the dollar (such as the Korean won or
the Thai baht) is interesting, since the observation of past fluctuations is clearly of no help
to predict the amplitude of the sudden turmoil of 1997, see Figure 1.1.
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Fig. 1.1. Three examples of statistically unforeseen crashes: the Korean won against the dollar in
1997 (top), the British 3-month short-term interest rates futures in 1992 (middle), and the S&P 500
in 1987 (bottom). In the example of the Korean won, it is particularly clear that the distribution of
price changes before the crisis was extremely narrow, and could not be extrapolated to anticipate
what happened in the crisis period.
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Hence, the statistical description of financial fluctuations is certainly imperfect. It is
nevertheless extremely helpful: in practice, the ‘weak stability’ hypothesis is in most cases
reasonable, at least to describe risks.†

In other words, the amplitude of the possible price changes (but not their sign!) is, to a
certain extent, predictable. It is thus rather important to devise adequate tools, in order to
control (if at all possible) financial risks. The goal of this first chapter is to present a certain
number of basic notions in probability theory which we shall find useful in the following.
Our presentation does not aim at mathematical rigour, but rather tries to present the key
concepts in an intuitive way, in order to ease their empirical use in practical applications.

1.2 Probability distributions

Contrarily to the throw of a dice, which can only return an integer between 1 and 6, the
variation of price of a financial asset‡ can be arbitrary (we disregard the fact that price
changes cannot actually be smaller than a certain quantity – a ‘tick’). In order to describe
a random process X for which the result is a real number, one uses a probability density
P(x), such that the probability that X is within a small interval of width dx around X = x
is equal to P(x) dx . In the following, we shall denote as P(·) the probability density for
the variable appearing as the argument of the function. This is a potentially ambiguous, but
very useful notation.

The probability that X is between a and b is given by the integral of P(x) between a
and b,

P(a < X < b) =
∫ b

a
P(x) dx . (1.1)

In the following, the notation P(·) means the probability of a given event, defined by the
content of the parentheses (·).

The function P(x) is a density; in this sense it depends on the units used to measure X .
For example, if X is a length measured in centimetres, P(x) is a probability density per unit
length, i.e. per centimetre. The numerical value of P(x) changes if X is measured in inches,
but the probability that X lies between two specific values l1 and l2 is of course independent
of the chosen unit. P(x) dx is thus invariant upon a change of unit, i.e. under the change
of variable x → γ x . More generally, P(x) dx is invariant upon any (monotonic) change of
variable x → y(x): in this case, one has P(x) dx = P(y) dy.

In order to be a probability density in the usual sense, P(x) must be non-negative
(P(x) ≥ 0 for all x) and must be normalized, that is that the integral of P(x) over the
whole range of possible values for X must be equal to one:∫ xM

xm

P(x) dx = 1, (1.2)

† The prediction of future returns on the basis of past returns is however much less justified.
‡ Asset is the generic name for a financial instrument which can be bought or sold, like stocks, currencies, gold,

bonds, etc.
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where xm (resp. xM ) is the smallest value (resp. largest) which X can take. In the case where
the possible values of X are not bounded from below, one takes xm = −∞, and similarly
for xM . One can actually always assume the bounds to be ±∞ by setting to zero P(x) in
the intervals ]−∞, xm] and [xM , ∞[. Later in the text, we shall often use the symbol

∫
as

a shorthand for
∫ +∞
−∞ .

An equivalent way of describing the distribution of X is to consider its cumulative
distribution P<(x), defined as:

P<(x) ≡ P(X < x) =
∫ x

−∞
P(x ′) dx ′. (1.3)

P<(x) takes values between zero and one, and is monotonically increasing with x . Obvi-
ously, P<(−∞) = 0 and P<(+∞) = 1. Similarly, one defines P>(x) = 1 − P<(x).

1.3 Typical values and deviations

It is quite natural to speak about ‘typical’ values of X . There are at least three mathematical
definitions of this intuitive notion: the most probable value, the median and the mean.
The most probable value x∗ corresponds to the maximum of the function P(x); x∗ needs
not be unique if P(x) has several equivalent maxima. The median xmed is such that the
probabilities that X be greater or less than this particular value are equal. In other words,
P<(xmed) = P>(xmed) = 1

2 . The mean, or expected value of X , which we shall note as
m or 〈x〉 in the following, is the average of all possible values of X , weighted by their
corresponding probability:

m ≡ 〈x〉 =
∫

x P(x) dx . (1.4)

For a unimodal distribution (unique maximum), symmetrical around this maximum, these
three definitions coincide. However, they are in general different, although often rather
close to one another. Figure 1.2 shows an example of a non-symmetric distribution, and the
relative position of the most probable value, the median and the mean.

One can then describe the fluctuations of the random variable X : if the random process is
repeated several times, one expects the results to be scattered in a cloud of a certain ‘width’
in the region of typical values of X . This width can be described by the mean absolute
deviation (MAD) Eabs, by the root mean square (RMS) σ (or, standard deviation), or
by the ‘full width at half maximum’ w1/2.

The mean absolute deviation from a given reference value is the average of the distance
between the possible values of X and this reference value,†

Eabs ≡
∫

|x − xmed|P(x) dx . (1.5)

† One chooses as a reference value the median for the MAD and the mean for the RMS, because for a fixed
distribution P(x), these two quantities minimize, respectively, the MAD and the RMS.
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Fig. 1.2. The ‘typical value’ of a random variable X drawn according to a distribution density P(x)
can be defined in at least three different ways: through its mean value 〈x〉, its most probable value x∗

or its median xmed. In the general case these three values are distinct.

Similarly, the variance (σ 2) is the mean distance squared to the reference value m,

σ 2 ≡ 〈(x − m)2〉 =
∫

(x − m)2 P(x) dx . (1.6)

Since the variance has the dimension of x squared, its square root (the RMS, σ ) gives the
order of magnitude of the fluctuations around m.

Finally, the full width at half maximum w1/2 is defined (for a distribution which is
symmetrical around its unique maximum x∗) such that P(x∗ ± (w1/2)/2) = P(x∗)/2, which
corresponds to the points where the probability density has dropped by a factor of two
compared to its maximum value. One could actually define this width slightly differently,
for example such that the total probability to find an event outside the interval [(x∗ − w/2),
(x∗ + w/2)] is equal to, say, 0.1. The corresponding value of w is called a quantile. This
definition is important when the distribution has very fat tails, such that the variance or the
mean absolute deviation are infinite.

The pair mean–variance is actually much more popular than the pair median–MAD. This
comes from the fact that the absolute value is not an analytic function of its argument, and
thus does not possess the nice properties of the variance, such as additivity under convolution,
which we shall discuss in the next chapter. However, for the empirical study of fluctuations,
it is sometimes preferable to use the MAD; it is more robust than the variance, that is, less
sensitive to rare extreme events, which may be the source of large statistical errors.
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1.4 Moments and characteristic function

More generally, one can define higher-order moments of the distribution P(x) as the average
of powers of X :

mn ≡ 〈xn〉 =
∫

xn P(x) dx . (1.7)

Accordingly, the mean m is the first moment (n = 1), and the variance is related to the
second moment (σ 2 = m2 − m2). The above definition, Eq. (1.7), is only meaningful if the
integral converges, which requires that P(x) decreases sufficiently rapidly for large |x | (see
below).

From a theoretical point of view, the moments are interesting: if they exist, their knowl-
edge is often equivalent to the knowledge of the distribution P(x) itself.† In practice how-
ever, the high order moments are very hard to determine satisfactorily: as n grows, longer
and longer time series are needed to keep a certain level of precision on mn; these high
moments are thus in general not adapted to describe empirical data.

For many computational purposes, it is convenient to introduce the characteristic func-
tion of P(x), defined as its Fourier transform:

P̂(z) ≡
∫

eizx P(x) dx . (1.8)

The function P(x) is itself related to its characteristic function through an inverse Fourier
transform:

P(x) = 1

2π

∫
e−izx P̂(z) dz. (1.9)

Since P(x) is normalized, one always has P̂(0) = 1. The moments of P(x) can be obtained
through successive derivatives of the characteristic function at z = 0,

mn = (−i)n dn

dzn
P̂(z)

∣∣∣∣
z=0

. (1.10)

One finally defines the cumulants cn of a distribution as the successive derivatives of the
logarithm of its characteristic function:

cn = (−i)n dn

dzn
log P̂(z)

∣∣∣∣
z=0

. (1.11)

The cumulant cn is a polynomial combination of the moments m p with p ≤ n. For example
c2 = m2 − m2 = σ 2. It is often useful to normalize the cumulants by an appropriate power
of the variance, such that the resulting quantities are dimensionless. One thus defines the
normalized cumulants λn ,

λn ≡ cn/σ
n. (1.12)

† This is not rigorously correct, since one can exhibit examples of different distribution densities which possess
exactly the same moments, see Section 1.7 below.
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One often uses the third and fourth normalized cumulants, called the skewness (ς ) and
kurtosis (κ),†

ς ≡ λ3 = 〈(x − m)3〉
σ 3

κ ≡ λ4 = 〈(x − m)4〉
σ 4

− 3. (1.13)

The above definition of cumulants may look arbitrary, but these quantities have remark-
able properties. For example, as we shall show in Section 2.2, the cumulants simply add
when one sums independent random variables. Moreover a Gaussian distribution (or the
normal law of Laplace and Gauss) is characterized by the fact that all cumulants of order
larger than two are identically zero. Hence the cumulants, in particular κ , can be interpreted
as a measure of the distance between a given distribution P(x) and a Gaussian.

1.5 Divergence of moments – asymptotic behaviour

The moments (or cumulants) of a given distribution do not always exist. A necessary
condition for the nth moment (mn) to exist is that the distribution density P(x) should
decay faster than 1/|x |n+1 for |x | going towards infinity, or else the integral, Eq. (1.7),
would diverge for |x | large. If one only considers distribution densities that are behaving
asymptotically as a power-law, with an exponent 1 + µ,

P(x) ∼ µAµ
±

|x |1+µ
for x → ±∞, (1.14)

then all the moments such that n ≥ µ are infinite. For example, such a distribution has
no finite variance whenever µ ≤ 2. [Note that, for P(x) to be a normalizable probability
distribution, the integral, Eq. (1.2), must converge, which requires µ > 0.]

The characteristic function of a distribution having an asymptotic power-law behaviour
given by Eq. (1.14) is non-analytic around z = 0. The small z expansion contains regular
terms of the form zn for n < µ followed by a non-analytic term |z|µ (possibly with
logarithmic corrections such as |z|µ log z for integer µ). The derivatives of order larger
or equal to µ of the characteristic function thus do not exist at the origin (z = 0).

1.6 Gaussian distribution

The most commonly encountered distributions are the ‘normal’ laws of Laplace and Gauss,
which we shall simply call Gaussian in the following. Gaussians are ubiquitous: for
example, the number of heads in a sequence of a thousand coin tosses, the exact number
of oxygen molecules in the room, the height (in inches) of a randomly selected individual,

† Note that it is sometimes κ + 3, rather than κ itself, which is called the kurtosis.
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are all approximately described by a Gaussian distribution.† The ubiquity of the Gaussian
can be in part traced to the central limit theorem (CLT) discussed at length in Chapter 2,
which states that a phenomenon resulting from a large number of small independent causes
is Gaussian. There exists however a large number of cases where the distribution describing
a complex phenomenon is not Gaussian: for example, the amplitude of earthquakes, the
velocity differences in a turbulent fluid, the stresses in granular materials, etc., and, as we
shall discuss in Chapter 6, the price fluctuations of most financial assets.

A Gaussian of mean m and root mean square σ is defined as:

PG(x) ≡ 1√
2πσ 2

exp

(
− (x − m)2

2σ 2

)
. (1.15)

The median and most probable value are in this case equal to m, whereas the MAD (or any
other definition of the width) is proportional to the RMS (for example, Eabs = σ

√
2/π ).

For m = 0, all the odd moments are zero and the even moments are given by m2n =
(2n − 1)(2n − 3) . . . σ 2n = (2n − 1)!! σ 2n .

All the cumulants of order greater than two are zero for a Gaussian. This can be realized
by examining its characteristic function:

P̂G(z) = exp

(
−σ 2z2

2
+ imz

)
. (1.16)

Its logarithm is a second-order polynomial, for which all derivatives of order larger than
two are zero. In particular, the kurtosis of a Gaussian variable is zero. As mentioned above,
the kurtosis is often taken as a measure of the distance from a Gaussian distribution. When
κ > 0 (leptokurtic distributions), the corresponding distribution density has a marked peak
around the mean, and rather ‘thick’ tails. Conversely, when κ < 0, the distribution density
has a flat top and very thin tails. For example, the uniform distribution over a certain interval
(for which tails are absent) has a kurtosis κ = − 6

5 . Note that the kurtosis is bounded from
below by the value −2, which corresponds to the case where the random variable can only
take two values −a and a with equal probability.

A Gaussian variable is peculiar because ‘large deviations’ are extremely rare. The quan-
tity exp(−x2/2σ 2) decays so fast for large x that deviations of a few times σ are nearly
impossible. For example, a Gaussian variable departs from its most probable value by more
than 2σ only 5% of the times, of more than 3σ in 0.2% of the times, whereas a fluctuation
of 10σ has a probability of less than 2 × 10−23; in other words, it never happens.

1.7 Log-normal distribution

Another very popular distribution in mathematical finance is the so-called log-normal law.
That X is a log-normal random variable simply means that log X is normal, or Gaussian. Its
use in finance comes from the assumption that the rate of returns, rather than the absolute

† Although, in the above three examples, the random variable cannot be negative. As we shall discuss later, the
Gaussian description is generally only valid in a certain neighbourhood of the maximum of the distribution.
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change of prices, are independent random variables. The increments of the logarithm of the
price thus asymptotically sum to a Gaussian, according to the CLT detailed in Chapter 2.
The log-normal distribution density is thus defined as:†

PLN(x) ≡ 1

x
√

2πσ 2
exp

(
− log2(x/x0)

2σ 2

)
, (1.17)

the moments of which being: mn = xn
0 en2σ 2/2.

From these moments, one deduces the skewness, given by ς3 = (e3σ 2 − 3eσ 2 + 2)/
(eσ 2 − 1)3/2, (� 3σ for σ 
 1), and the kurtosis κ = (e6σ 2 − 4e3σ 2 + 6eσ 2 − 3)/(eσ 2 −
1)2 − 3, (� 19σ 2 for σ 
 1).

In the context of mathematical finance, one often prefers log-normal to Gaussian distri-
butions for several reasons. As mentioned above, the existence of a random rate of return,
or random interest rate, naturally leads to log-normal statistics. Furthermore, log-normals
account for the following symmetry in the problem of exchange rates:‡ if x is the rate of
currency A in terms of currency B, then obviously, 1/x is the rate of currency B in terms
of A. Under this transformation, log x becomes −log x and the description in terms of a
log-normal distribution (or in terms of any other even function of log x) is independent of
the reference currency. One often hears the following argument in favour of log-normals:
since the price of an asset cannot be negative, its statistics cannot be Gaussian since the
latter admits in principle negative values, whereas a log-normal excludes them by construc-
tion. This is however a red-herring argument, since the description of the fluctuations of
the price of a financial asset in terms of Gaussian or log-normal statistics is in any case an
approximation which is only valid in a certain range. As we shall discuss at length later,
these approximations are totally unadapted to describe extreme risks. Furthermore, even if
a price drop of more than 100% is in principle possible for a Gaussian process,§ the error
caused by neglecting such an event is much smaller than that induced by the use of either
of these two distributions (Gaussian or log-normal). In order to illustrate this point more
clearly, consider the probability of observing n times ‘heads’ in a series of N coin tosses,
which is exactly equal to 2−N Cn

N . It is also well known that in the neighbourhood of N/2,
2−N Cn

N is very accurately approximated by a Gaussian of variance N/4; this is however
not contradictory with the fact that n ≥ 0 by construction!

Finally, let us note that for moderate volatilities (up to say 20%), the two distributions
(Gaussian and log-normal) look rather alike, especially in the ‘body’ of the distribution
(Fig. 1.3). As for the tails, we shall see later that Gaussians substantially underestimate
their weight, whereas the log-normal predicts that large positive jumps are more frequent

† A log-normal distribution has the remarkable property that the knowledge of all its moments is not suffi-
cient to characterize the corresponding distribution. One can indeed show that the following distribution:

1√
2π

x−1 exp[− 1
2 (log x)2][1 + a sin(2π log x)], for |a| ≤ 1, has moments which are independent of the value of

a, and thus coincide with those of a log-normal distribution, which corresponds to a = 0.
‡ This symmetry is however not always obvious. The dollar, for example, plays a special role. This symmetry can

only be expected between currencies of similar strength.
§ In the rather extreme case of a 20% annual volatility and a zero annual return, the probability for the price to

become negative after a year in a Gaussian description is less than one out of 3 million.
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Fig. 1.3. Comparison between a Gaussian (thick line) and a log-normal (dashed line), with
m = x0 = 100 and σ equal to 15 and 15% respectively. The difference between the two curves
shows up in the tails.

than large negative jumps. This is at variance with empirical observation: the distributions of
absolute stock price changes are rather symmetrical; if anything, large negative draw-downs
are more frequent than large positive draw-ups.

1.8 Lévy distributions and Paretian tails

Lévy distributions (noted Lµ(x) below) appear naturally in the context of the CLT (see
Chapter 2), because of their stability property under addition (a property shared by
Gaussians). The tails of Lévy distributions are however much ‘fatter’ than those of Gaus-
sians, and are thus useful to describe multiscale phenomena (i.e. when both very large
and very small values of a quantity can commonly be observed – such as personal income,
size of pension funds, amplitude of earthquakes or other natural catastrophes, etc.). These
distributions were introduced in the 1950s and 1960s by Mandelbrot (following Pareto)
to describe personal income and the price changes of some financial assets, in particular
the price of cotton. An important constitutive property of these Lévy distributions is their
power-law behaviour for large arguments, often called Pareto tails:

Lµ(x) ∼ µAµ
±

|x |1+µ
for x → ±∞, (1.18)

where 0 < µ < 2 is a certain exponent (often called α), and Aµ
± two constants which we

call tail amplitudes, or scale parameters: A± indeed gives the order of magnitude of the
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large (positive or negative) fluctuations of x . For instance, the probability to draw a number
larger than x decreases as P>(x) = (A+/x)µ for large positive x .

One can of course in principle observe Pareto tails with µ ≥ 2; but, those tails do not
correspond to the asymptotic behaviour of a Lévy distribution.

In full generality, Lévy distributions are characterized by an asymmetry parameter
defined as β ≡ (Aµ

+ − Aµ
−)/(Aµ

+ + Aµ
−), which measures the relative weight of the positive

and negative tails. We shall mostly focus in the following on the symmetric case β = 0. The
fully asymmetric case (β = 1) is also useful to describe strictly positive random variables,
such as, for example, the time during which the price of an asset remains below a certain
value, etc.

An important consequence of Eq. (1.14) with µ ≤ 2 is that the variance of a Lévy
distribution is formally infinite: the probability density does not decay fast enough for the
integral, Eq. (1.6), to converge. In the case µ ≤ 1, the distribution density decays so slowly
that even the mean, or the MAD, fail to exist.† The scale of the fluctuations, defined by the
width of the distribution, is always set by A = A+ = A−.

There is unfortunately no simple analytical expression for symmetric Lévy distributions
Lµ(x), except for µ = 1, which corresponds to a Cauchy distribution (or Lorentzian):

L1(x) = A

x2 + π2 A2
. (1.19)

However, the characteristic function of a symmetric Lévy distribution is rather
simple, and reads:

L̂µ(z) = exp(−aµ|z|µ), (1.20)

where aµ is a constant proportional to the tail parameter Aµ:

Aµ = µ	(µ − 1)
sin(πµ/2)

π
aµ 1 < µ < 2, (1.21)

and

Aµ = (1 − µ)	(µ)
sin(πµ/2)

πµ
aµ µ < 1. (1.22)

It is clear, from (1.20), that in the limit µ = 2, one recovers the definition of a Gaussian.
When µ decreases from 2, the distribution becomes more and more sharply peaked around
the origin and fatter in its tails, while ‘intermediate’ events lose weight (Fig. 1.4). These
distributions thus describe ‘intermittent’ phenomena, very often small, sometimes gigantic.

The moments of the symmetric Lévy distribution can be computed, when they exist. One
finds:

〈|x |ν〉 = (aµ)ν/µ 	(−ν/µ)

µ	(−ν) cos(πν/2)
, − 1 < ν < µ. (1.23)

† The median and the most probable value however still exist. For a symmetric Lévy distribution, the most probable
value defines the so-called localization parameter m.
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Fig. 1.4. Shape of the symmetric Lévy distributions with µ = 0.8, 1.2, 1.6 and 2 (this last value
actually corresponds to a Gaussian). The smaller µ, the sharper the ‘body’ of the distribution, and
the fatter the tails, as illustrated in the inset.

Note finally that Eq. (1.20) does not define a probability distribution when µ > 2, because
its inverse Fourier transform is not everywhere positive.

In the case β �= 0, one would have:

L̂β
µ(z) = exp

[
−aµ|z|µ

(
1 + iβ tan(µπ/2)

z

|z|
)]

(µ �= 1). (1.24)

It is important to notice that while the leading asymptotic term for large x is given
by Eq. (1.18), there are subleading terms which can be important for finite x . The full
asymptotic series actually reads:

Lµ(x) =
∞∑

n=1

(−)n+1

πn!

an
µ

x1+nµ
	(1 + nµ) sin(πµn/2). (1.25)

The presence of the subleading terms may lead to a bad empirical estimate of the exponent
µ based on a fit of the tail of the distribution. In particular, the ‘apparent’ exponent which
describes the function Lµ for finite x is larger than µ, and decreases towards µ for x → ∞,
but more and more slowly as µ gets nearer to the Gaussian value µ = 2, for which the
power-law tails no longer exist. Note however that one also often observes empirically
the opposite behaviour, i.e. an apparent Pareto exponent which grows with x . This arises
when the Pareto distribution, Eq. (1.18), is only valid in an intermediate regime x 
 1/α,
beyond which the distribution decays exponentially, say as exp(−αx). The Pareto tail is
then ‘truncated’ for large values of x , and this leads to an effective µ which grows with x .
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An interesting generalization of the symmetric Lévy distributions which accounts for this
exponential cut-off is given by the truncated Lévy distributions (TLD), which will be of
much use in the following. A simple way to alter the characteristic function Eq. (1.20) to
account for an exponential cut-off for large arguments is to set:

L̂ (t)
µ (z) = exp

[
−aµ

(α2 + z2)
µ

2 cos (µarctan(|z|/α)) − αµ

cos(πµ/2)

]
, (1.26)

for 1 ≤ µ ≤ 2. The above form reduces to Eq. (1.20) for α = 0. Note that the argument in
the exponential can also be written as:

aµ

2 cos(πµ/2)
[(α + iz)µ + (α − iz)µ − 2αµ]. (1.27)

The first cumulants of the distribution defined by Eq. (1.26) read, for 1 < µ < 2:

c2 = µ(µ − 1)
aµ

| cos πµ/2|α
µ−2 c3 = 0. (1.28)

The kurtosis κ = λ4 = c4/c2
2 is given by:

λ4 = (3 − µ)(2 − µ)| cos πµ/2|
µ(µ − 1)aµαµ

. (1.29)

Note that the case µ = 2 corresponds to the Gaussian, for which λ4 = 0 as expected.
On the other hand, when α → 0, one recovers a pure Lévy distribution, for which c2

and c4 are formally infinite. Finally, if α → ∞ with aµαµ−2 fixed, one also recovers the
Gaussian.

As explained below in Section 3.1.3, the truncated Lévy distribution has the interesting
property of being infinitely divisible for all values of α and µ (this includes the Gaussian
distribution and the pure Lévy distributions).

Exponential tail: a limiting case

Very often in the following, we shall notice that in the formal limit µ → ∞, the power-
law tail becomes an exponential tail, if the tail parameter is simultaneously scaled as
Aµ = (µ/α)µ. Qualitatively, this can be understood as follows: consider a probability
distribution restricted to positive x, which decays as a power-law for large x, defined
as:

P>(x) = Aµ

(A + x)µ
. (1.30)

This shape is obviously compatible with Eq. (1.18), and is such that P>(x = 0) = 1. If
A = (µ/α), one then finds:

P>(x) = 1

[1 + (αx/µ)]µ
−→
µ→∞

exp(−αx). (1.31)
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1.9 Other distributions (∗)

There are obviously a very large number of other statistical distributions useful to describe
random phenomena. Let us cite a few, which often appear in a financial context:

� The discrete Poisson distribution: consider a set of points randomly scattered on the
real axis, with a certain density ω (e.g. the times when the price of an asset changes).
The number of points n in an arbitrary interval of length � is distributed according to the
Poisson distribution:

P(n) ≡ (ω�)n

n!
exp(−ω�). (1.32)

� The hyperbolic distribution, which interpolates between a Gaussian ‘body’ and expo-
nential tails:

PH(x) ≡ 1

2x0 K1(αx0)
exp −[

α

√
x2

0 + x2
]
, (1.33)

where the normalization K1(αx0) is a modified Bessel function of the second kind. For
x small compared to x0, PH(x) behaves as a Gaussian although its asymptotic behaviour
for x � x0 is fatter and reads exp(−α|x |).

From the characteristic function

P̂H(z) = αx0 K1(x0
√

1 + αz)

K1(αx0)
√

1 + αz
, (1.34)

we can compute the variance

σ 2 = x0 K2(αx0)

αK1(αx0)
, (1.35)

and kurtosis

κ = 3

(
K2(αx0)

K1(αx0)

)2

+ 12

αx0

K2(αx0)

K1(αx0)
− 3. (1.36)

Note that the kurtosis of the hyperbolic distribution is always between zero and three.
(The skewness is zero since the distribution is even.)
In the case x0 = 0, one finds the symmetric exponential distribution:

PE(x) = α

2
exp(−α|x |), (1.37)

with even moments m2n = (2n)! α−2n , which gives σ 2 = 2α−2 and κ = 3. Its character-
istic function reads: P̂E(z) = α2/(α2 + z2).

� The Student distribution, which also has power-law tails:

PS(x) ≡ 1√
π

	((1 + µ)/2)

	(µ/2)

aµ

(a2 + x2)(1+µ)/2
, (1.38)

which coincides with the Cauchy distribution for µ = 1, and tends towards a Gaussian in
the limit µ → ∞, provided that a2 is scaled as µ. This distribution is usually known as
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Fig. 1.5. Probability density for the truncated Lévy (µ = 3
2 ), Student and hyperbolic distributions.

All three have two free parameters which were fixed to have unit variance and kurtosis. The inset
shows a blow-up of the tails where one can see that the Student distribution has tails similar to (but
slightly thicker than) those of the truncated Lévy.

Student’s t-distribution with µ degrees of freedom, but we shall call it simply the Student
distribution.

The even moments of the Student distribution read: m2n = (2n − 1)!!	(µ/2 − n)/
	(µ/2) (a2/2)n , provided 2n < µ; and are infinite otherwise. One can check that
in the limit µ → ∞, the above expression gives back the moments of a Gaussian:
m2n = (2n − 1)!! σ 2n . The kurtosis of the Student distribution is given by κ = 6/(µ − 4).
Figure 1.5 shows a plot of the Student distribution with κ = 1, corresponding to
µ = 10.

Note that the characteristic function of Student distributions can also be explicitly
computed, and reads:

P̂S(z) = 21−µ/2

	(µ/2)
(az)µ/2 Kµ/2(az), (1.39)

where Kµ/2 is the modified Bessel function. The cumulative distribution in the useful
cases µ = 3 and µ = 4 with a chosen such that the variance is unity read:

PS,>(x) = 1

2
− 1

π

[
arctan x + x

1 + x2

]
(µ = 3, a = 1), (1.40)



16 Probability theory: basic notions

and

PS,>(x) = 1

2
− 3

4
u + 1

4
u3, (µ = 4, a =

√
2), (1.41)

where u = x/
√

2 + x2.
� The inverse gamma distribution, for positive quantities (such as, for example, volatilities,

or waiting times), also has power-law tails. It is defined as:

P	(x) = xµ

0

	(µ)x1+µ
exp

(
− x0

x

)
. (1.42)

Its moments of order n < µ are easily computed to give: mn = xn
0 	(µ − n)/	(µ). This

distribution falls off very fast when x → 0. As we shall see in Chapter 7, an inverse
gamma distribution and a log-normal distribution can sometimes be hard to distinguish
empirically. Finally, if the volatility σ 2 of a Gaussian is itself distributed as an inverse
gamma distribution, the distribution of x becomes a Student distribution – see Section 9.2.5
for more details.

1.10 Summary

� The most probable value and the mean value are both estimates of the typical values
of a random variable. Fluctuations around this value are measured by the root mean
square deviation or the mean absolute deviation.

� For some distributions with very fat tails, the mean square deviation (or even the
mean value) is infinite, and the typical values must be described using quantiles.

� The Gaussian, the log-normal and the Student distributions are some of the important
probability distributions for financial applications.

� The way to generate numerically random variables with a given distribution
(Gaussian, Lévy stable, Student, etc.) is discussed in Chapter 18, Appendix F.
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